A well thought-out Google Play store listing can significantly improve the discoverability of your app or game and drive installations. With the recent launch of Store Listing Experiments on the Google Play Developer Console, you can now conduct A/B tests on the text and graphics of your store listing page and use the data to make more informed decisions.
Dots is a US-founded game developer which released the popular game, Dots, and its addictive sequel, TwoDots. Dots used its store listings to showcase its brands and improve conversions by letting players know what to expect.
Christian Calderon, Head of Marketing for Dots, shared his top tips with us on store listings and visibility on Google Play.
As part of the 100 Days of Google Dev video series, Kobi Glick from the Google Play team explains how to test different graphics and text on your app or game’s Play Store listing to increase conversions using the new Store Listing Experiments feature in the Developer Console.
Posted by Josh Gordon, Developer Advocate
Today we’re releasing the Desktop Head Unit (DHU), a new testing tool for Android Auto developers. The DHU enables your workstation to act as an Android Auto head unit that emulates the in-car experience for testing purposes. Once you’ve installed the DHU, you can test your Android Auto apps by connecting your phone and workstation via USB. Your phone will behave as if it’s connected to a car. Your app is displayed on the workstation, the same as it’s displayed on a car.
Now you can test pre-released versions of your app in a production-like environment, without having to work from your car. With the release of the DHU, the previous simulators are deprecated, but will be supported for a short period prior to being officially removed.
You’ll need an Android phone running Lollipop or higher, with the Android Auto companion app installed. Compile your Auto app and install it on your phone.
Install the DHU on your workstation by opening the SDK Manager and downloading it from Extras > Android Auto Desktop Head Unit emulator. The DHU will be installed in the <sdk>/extras/google/auto/ directory.
Extras > Android Auto Desktop Head Unit emulator.
<sdk>/extras/google/auto/
Be sure your phone and workstation are connected via USB.
adb forward tcp:5277 tcp:5277
cd <sdk>/extras/google/auto/
./desktop-head-unit
desktop-head-unit.exe
At this point the DHU will launch on your workstation, and your phone will enter Android Auto mode. Check out the developer guide for more info. We hope you enjoy using the DHU!
Posted by Ian Lake, Developer Advocate
Android devices do a lot, whether it is taking pictures, getting directions or making phone calls. With all of this functionality comes a large amount of very sensitive user data including contacts, calendar appointments, current location, and more. This sensitive information is protected by permissions, which each app must have before being able to access the data. Android 6.0 Marshmallow introduces one of the largest changes to the permissions model with the addition of runtime permissions, a new permission model that replaces the existing install time permissions model when you target API 23 and the app is running on an Android 6.0+ device.
Runtime permissions give your app the ability to control when and with what context you’ll ask for permissions. This means that users installing your app from Google Play will not be required to accept a list of permissions before installing your app, making it easy for users to get directly into your app. It also means that if your app adds new permissions, app updates will not be blocked until the user accepts the new permissions. Instead, your app can ask for the newly added runtime permissions as needed.
Finding the right time to ask for runtime permissions has an important impact on your app’s user experience. We’ve gathered a number of design patterns in our new Permission design guidelines including best practices around when to request permissions, how to explain why permissions are needed, and how to handle permissions being denied.
In many cases, you can avoid permissions altogether by using the existing intents system to utilize other existing specialized apps rather than building a full experience within your app. An example of this is using ACTION_IMAGE_CAPTURE to start an existing camera app the user is familiar with rather than building your own camera experience. Learn more about permissions versus intents.
ACTION_IMAGE_CAPTURE
However, if you do need a runtime permission, there’s a number of tools to help you. Checking for whether your app has a permission is possible with ContextCompat.checkSelfPermission() (available as part of revision 23 of the support-v4 library for backward compatibility) and requesting permissions can be done with requestPermissions(), bringing up the system controlled permissions dialog to allow the user to grant you the requested permission(s) if you don’t already have them. Keep in mind that users can revoke permissions at any time through the system settings so you should always check permissions every time.
ContextCompat.checkSelfPermission()
requestPermissions()
A special note should be made around shouldShowRequestPermissionRationale(). This method returns true if the user has denied your permission request at least once yet have not selected the ‘Don’t ask again’ option (which appears the second or later time the permission dialog appears). This gives you an opportunity to provide additional education around the feature and why you need the given permission. Learn more about explaining why the app needs permissions.
shouldShowRequestPermissionRationale()
Read through the design guidelines and our developer guide for all of the details in getting your app ready for Android 6.0 and runtime permissions. Making it easy to install your app and providing context around accessing user’s sensitive data are key changes you can make to build better apps.
Posted by Lily Sheringham, Developer Marketing at Google Play
Editor’s note: We’ve been talking to developers to find out how they’ve been achieving success on Google Play. We recently spoke to Reko Ukko at Finnish mobile game developer, Seriously, to find out how to successfully use Notifications.
Notifications on Android let you send timely, relevant, and actionable information to your users' devices. When used correctly, notifications can increase the value of your app or game and drive ongoing engagement.
Seriously is a Finnish mobile game developer focused on creating entertaining games with quality user experiences. They use push notifications to drive engagement with their players, such as helping players progress to the next level when they’ve left the app after getting stuck.
Reko Ukko, VP of Game Design at Seriously, shared his tips with us on how to use notifications to increase the value of your game and drive ongoing engagement.
Experiment with notifications yourself to understand what’s best for your players and your game. You can power your own notifications with Google Cloud Messaging, which is free, cross platform, reliable, and thoughtful about battery usage. Find out more about developing Notifications on Android.
Posted by Colt McAnlis, Head Performance Wrangler
The Big Android BBQ (BABBQ) is almost here and Google Developers will be there serving up a healthy portion of best practices for Android development and performance! BABBQ will be held at the Hurst Convention Center in Dallas/Ft.Worth, Texas on October 22-23, 2015.
We also have some great news! If you sign up for the event through August 25th, you will get 25% off when you use the promotional code "ANDROIDDEV25". You can also click here to use the discount.
Now, sit back, and enjoy this video of some Android cowfolk preparing for this year’s BBQ!
The Big Android BBQ is an Android combo meal with a healthy serving of everything ranging from the basics, to advanced technical dives, and best practices for developers smothered in a sweet sauce of a close knit community.
This year, we are packing in an unhealthy amount of Android Performance Patterns, followed up with the latest and greatest techniques and APIs from the Android 6.0 Marshmallow release. It’s all rounded out with code labs to let you get hands-on learning. To super-size your meal, Android Developer instructors from Udacity will be on-site to guide users through the Android Nanodegree. (Kinda like a personal-waiter at an all-you-can-learn buffet).
Also, come watch Colt McAnlis defend his BABBQ “Speechless” Crown against Silicon Valley reigning champ Chet Haase. It'll be a fist fight of humor in the heart of Texas!
You can get your tickets here, and we look forward to seeing you in October!
Posted by Wayne Piekarski, Developer Advocate
The Android Wear team is rolling out a new update that includes support for interactive watch faces. Now, you can detect taps on the watch face to provide information quickly, without having to open an app. This gives you new opportunities to make your watch face more engaging and interesting. For example, in this animation for the Pujie Black watch face, you can see that just touching the calendar indicator quickly changes the watch face to show the agenda for the day, making the watch face more helpful and engaging.
The first step in building an interactive watch face is to update your build.gradle to use version 1.3.0 of the Wearable Support library. Then, you enable interactive watch faces in your watch face style using setAcceptsTapEvents(true):
setWatchFaceStyle(new WatchFaceStyle.Builder(mService) .setAcceptsTapEvents(true) // other style customizations .build());
To receive taps, you can override the following method:
@Override public void onTapCommand(int tapType, int x, int y, long eventTime) { }
You will receive events TAP_TYPE_TOUCH when the user initially taps on the screen, TAP_TYPE_TAP when the user releases their finger, and TAP_TYPE_TOUCH_CANCEL if the user moves their finger while touching the screen. The events will contain (x,y) coordinates of where the touch event occurred. You should note that other interactions such as swipes and long presses are reserved for use by the Android Wear system user interface.
TAP_TYPE_TOUCH
TAP_TYPE_TAP
TAP_TYPE_TOUCH_CANCEL
And that’s it! Adding interaction to your existing watch faces is really easy with just a few extra lines of code. We have updated the WatchFace sample to show a complete implementation, and design and development documentation describing the API in detail.
This release also brings Wi-Fi support to the LG G Watch R. Wi-Fi support is already available in many Android Wear watches and allows the watch to communicate with the companion phone without requiring a direct Bluetooth connection. So, you can leave your phone at home, and as long as you have Wi-Fi, you can use your watch to receive notifications, send messages, make notes, or ask Google a question. As a developer, you should ensure that you use the Data API to abstract away your communications, so that your application will work on any kind of Android Wear watch, even those without Wi-Fi.
This update to Android Wear will roll out via an over-the-air (OTA) update to all Android Wear watches over the coming weeks. The wearable support library version 1.3 provides the implementation for touch interactions, and is designed to continue working on devices which have not been updated. However, the touch support will only work on updated devices, so you should wait to update your apps on Google Play until the OTA rollout is complete, which we’ll announce on the Android Wear Developers Google+ community. If you want to release immediately but check if touch interactions are available, you can use this code snippet:
PackageInfo packageInfo = PackageManager.getPackageInfo("com.google.android.wearable.app", 0); if (packageInfo.versionCode > 720000000) { // Supports taps - cache this result to avoid calling PackageManager again } else { // Device does not support taps yet }
Android Wear developers have created thousands of amazing apps for the platform and we can’t wait to see the interactive watch faces you build. If you’re looking for a little inspiration, or just a cool new watch face, check out the Interactive Watch Faces collection on Google Play.
By Jamal Eason, Product Manager, Android
Android 6.0 Marshmallow
Whether you like them straight out of the bag, roasted to a golden brown exterior with a molten center, or in fluff form, who doesn’t like marshmallows? We definitely like them! Since the launch of the M Developer Preview at Google I/O in May, we’ve enjoyed all of your participation and feedback. Today with the final Developer Preview update, we're introducing the official Android 6.0 SDK and opening Google Play for publishing your apps that target the new API level 23 in Android Marshmallow.
The final Android 6.0 SDK is now available to download via the SDK Manager in Android Studio. With the Android 6.0 SDK you have access to the final Android APIs and the latest build tools so that you can target API 23. Once you have downloaded the Android 6.0 SDK into Android Studio, update your app project compileSdkVersion to 23 and you are ready to test your app with the new platform. You can also update your app to targetSdkVersion to 23 test out API 23 specific features like auto-backup and app permissions.
compileSdkVersion
23
targetSdkVersion
Along with the Android 6.0 SDK, we also updated the Android Support Library to v23. The new Android Support library makes it easier to integrate many of the new platform APIs, such as permissions and fingerprint support, in a backwards-compatible manner. This release contains a number of new support libraries including: customtabs, percent, recommendation, preference-v7, preference-v14, and preference-leanback-v17.
Along with the new platform features like fingerprint support and Doze power saving mode, Android Marshmallow features a new permissions model that streamlines the app install and update process. To give users this flexibility and to make sure your app behaves as expected when an Android Marshmallow user disables a specific permission, it’s important that you update your app to target API 23, and test the app thoroughly with Android Marshmallow users.
The Android emulator system images and developer preview system images have been updated for supported Nexus devices (Nexus 5, Nexus 6, Nexus 9 & Nexus Player) to help with your testing. You can download the device system images from the developer preview site. Also, similar to the previous developer update, supported Nexus devices will receive an Over-the-Air (OTA) update over the next couple days.
Although the Android 6.0 SDK is final, the devices system images are still developer preview versions. The preview images are near final but they are not intended for consumer use. Remember that when Android 6.0 Marshmallow launches to the public later this fall, you'll need to manually re-flash your device to a factory image to continue to receive consumer OTA updates for your Nexus device.
Compared to the previous developer preview update, you will find this final API update fairly incremental. You can check out all the API differences here, but a few of the changes since the last developer update include:
Google Play is now ready to accept your API 23 apps via the Google Play Developer Console on all release channels (Alpha, Beta & Production). At the consumer launch this fall, the Google Play store will also be updated so that the app install and update process supports the new permissions model for apps using API 23.
To make sure that your updated app runs well on Android Marshmallow and older versions, we recommend that you use Google Play’s newly improved beta testing feature to get early feedback, then do a staged rollout as you release the new version to all users.
Posted by Laurence Moroney, Developer Advocate
With the release of Google Play services 7.8 we’re excited to announce that we’ve added new Mobile Vision APIs which provides the Barcode Scanner API to read and decode a myriad of different barcode types quickly, easily and locally.
Classes for detecting and parsing bar codes are available in the com.google.android.gms.vision.barcode namespace. The BarcodeDetector class is the main workhorse -- processing Frame objects to return a SparseArray<Barcode> types.
The Barcode type represents a single recognized barcode and its value. In the case of 1D barcode such as UPC codes, this will simply be the number that is encoded in the barcode. This is available in the rawValue property, with the detected encoding type set in the format field.
For 2D barcodes that contain structured data, such as QR codes, the valueFormat field is set to the detected value type, and the corresponding data field is set. So, for example, if the URL type is detected, the constant URL will be loaded into the valueFormat, and the URL property will contain the desired value. Beyond URLs, there are lots of different data types that the QR code can support -- check them out in the documentation here.
When using the API, you can read barcodes in any orientation. They don’t always need to be straight on, and oriented upwards!
Importantly, all barcode parsing is done locally, making it really fast, and in some cases, such as PDF-417, all the information you need might be contained within the barcode itself, so you don’t need any further lookups.
You can learn more about using the API by checking out the sample on GitHub. This uses the Mobile Vision APIs along with a Camera preview to detect both faces and barcodes in the same image.
The API supports both 1D and 2D bar codes, in a number of sub formats.
For 1D Bar Codes, these are:
For 2D Bar Codes, these are:
It’s easy to build applications that use bar code detection using the Barcode Scanner API, and we’ve provided lots of great resources that will allow you to do so. Check them out here:
Follow the Code Lab
Read the Mobile Vision Documentation
Explore the sample
With the release of Google Play services 7.8, we announced the addition of new Mobile Vision APIs, which includes a new Face API that finds human faces in images and video better and faster than before. This API is also smarter at distinguishing faces at different orientations and with different facial features facial expressions.
Face Detection is a leap forward from the previous Android FaceDetector.Face API. It’s designed to better detect human faces in images and video for easier editing. It’s smart enough to detect faces even at different orientations -- so if your subject’s head is turned sideways, it can detect it. Specific landmarks can also be detected on faces, such as the eyes, the nose, and the edges of the lips.
Important Note
This is not a face recognition API. Instead, the new API simply detects areas in the image or video that are human faces. It also infers from changes in the position frame to frame that faces in consecutive frames of video are the same face. If a face leaves the field of view, and re-enters, it isn’t recognized as a previously detected face.
When the API detects a human face, it is returned as a Face object. The Face object provides the spatial data for the face so you can, for example, draw bounding rectangles around a face, or, if you use landmarks on the face, you can add features to the face in the correct place, such as giving a person a new hat.
getPosition()
getWidth()
getHeight()
getId()
The Face API is smart enough to detect faces in multiple orientations. As the head is a solid object that is capable of moving and rotating around multiple axes, the view of a face in an image can vary wildly.
Here’s an example of a human face, instantly recognizable to a human, despite being oriented in greatly different ways:
The API is capable of detecting this as a face, even in the circumstances where as much as half of the facial data is missing, and the face is oriented at an angle, such as in the corners of the above image.
Here are the method calls available to a face object:
getEulerY()
getEulerZ()
A landmark is a point of interest within a face. The API provides a getLandmarks() method which returns a List , where a Landmark object returns the coordinates of the landmark, where a landmark is one of the following: Bottom of mouth, left cheek, left ear, left ear tip, left eye, left mouth, base of nose, right cheek, right ear, right ear tip, right eye or right mouth.
getLandmarks()
List
In addition to detecting the landmark, the API offers the following function calls to allow you to smartly detect various facial states:
getIsLeftEyeOpenProbability()
getIsRighteyeOpenProbability()
getIsSmilingProbability()
Thus, for example, you could write an app that only takes a photo when all of the subjects in the image are smiling.
It’s easy to build applications that use facial detection using the Face API, and we’ve provided lots of great resources that will allow you to do so. Check them out here:
Read the Documentation
Posted by Magnus Hyttsten, Developer Advocate, Play services team
Today we’ve finished the roll-out of Google Play services 7.8. In this release, we’ve added two new APIs. The Nearby Messages API allows you to build simple interactions between nearby devices and people, while the Mobile Vision API helps you create apps that make sense of the visual world, using real-time on-device vision technology. We’ve also added optimization and new features to existing APIs. Check out the highlights in the video or read about them below.
Nearby Messages introduces a cross-platform API to find and communicate with mobile devices and beacons, based on proximity. Nearby uses a combination of Bluetooth, Wi-Fi, and an ultrasonic audio modem to connect devices. And it works across Android and iOS. For more info on Nearby Messages, check out the documentation and the launch blog post.
We’re happy to announce a new Mobile Vision API. Mobile Vision has two components.
The Face API allows developers to find human faces in images and video. It’s faster, more accurate and provides more information than the Android FaceDetector.Face API. It finds faces in any orientation, allows developers to find landmarks such as the eyes, nose, and mouth, and identifies faces that are smiling and/or have their eyes open. Applications include photography, games, and hands-free user interfaces.
The Barcode API allows apps to recognize barcodes in real-time, on device, in any orientation. It supports a range of barcodes and can detect multiple barcodes at once. For more information, check out the Mobile Vision documentation.
And finally, Google Cloud Messaging - Google’s simple and reliable messaging service - has expanded notification to support localization for Android. When composing the notification from the server, set the appropriate body_loc_key, body_loc_args, title_loc_key, and title_loc_args. GCM will handle displaying the notification based on current device locale, which saves you having to figure out which messages to display on which devices! Check out the docs for more info.
And getting ready for the Android M release, we've added high and normal priority to GCM messaging, giving you additional control over message delivery through GCM. Set messages that need immediate users attention to high priority, e.g., chat message alert, incoming voice call alert. And keep the remaining messages at normal priority so that it can be handled in the most battery efficient way without impeding your app performance.
You can get started developing today by downloading the Google Play services SDK from the Android SDK Manager.
To learn more about Google Play services and the APIs available to you through it, visit our documentation on Google Developers.
Posted by Lily Sheringham, Google Play team
South Korean Games developers Zabob Studio and Buff Studio are start-ups seeking to become major players in the global mobile games industry.
Zabob Studio was set up by Kwon Dae-hyeon and his wife in 2013. This couple-run business has already published ten games, including hits ‘Zombie Judgement Day’ and ‘Infinity Dungeon.’ So far, the company has generated more than KRW ₩140M (approximately $125,000 USD) in sales revenue, with about 60 percent of the studio’s downloads coming from international markets, such as Taiwan and Brazil.
Elsewhere, Buff Studio was founded in 2014 and right from the start, its first game Buff Knight was an instant hit. It was even featured as the ‘Game of the Week’ on Google Play and was included in “30 Best Games of 2014” lists. A sequel is already in the works showing the potential of the franchise.
In this video, Kwon Dae-hyeon, CEO of Zabob Studio, and Kim Do-Hyeong, CEO of Buff Studio, talk about how Google Play services and the Google Play Developer Console have helped them maintain a competitive edge, market their games efficiently to global users and grow revenue on the platform.
Check Zabob Studio apps and Buff Knight on Google Play!
We’re pleased to share that Android Developer Stories will now come with translated subtitles on YouTube in popular languages around the world. Find out how to turn on YouTube captions. To read locally translated blog posts, visit the Google developer blog in Korean.
Posted by Roman Nurik, Design Advocate, and Richard The, Google Creative Lab
Android was created as an open and flexible platform, giving people more ways to come together to imagine and create. This spirit of invention has allowed developers to push the boundaries of mobile development and has helped make Android the go-to platform for creative projects in more places—from phones, to tablets, to watches, and beyond. We set out to find a way to celebrate the creative, experimental Android work of developers everywhere and inspire more developers to get creative with technology and code.
Today, we’re excited to launch Android Experiments: a showcase of inspiring projects on Android and an open invitation for all developers to submit their own experiments to the gallery.
The 20 initial experiments show a broad range of creative work–from camera experiments to innovative Android Wear apps to hardware hacks to cutting edge OpenGL demos. All are built using platforms such as the Android SDK and NDK, Android Wear, the IOIO board, Cinder, Processing, OpenFrameworks and Unity. Each project creatively examines in small and big ways how we think of the devices we interact with every day.
Today is just the beginning as we’re opening up experiment submissions to creators everywhere. Whether you’re a student just starting out, or you’ve been at it for a while, and no matter the framework it uses or the device it runs on, Android Experiments is open to everybody.
Check out Android Experiments to view the completed projects, or to submit one of your own. While we can’t post every submission, we’d love to see what you’ve created.
Follow along to see what others build at AndroidExperiments.com.
Posted by Shannon Woods, Technical Program Manager
Developers of games and 3D graphics applications have one key challenge to meet: How complex a scene can they draw in a small fraction of a second? Much of the work in graphics development goes into organizing data so it can be efficiently consumed by the GPU for rendering. But even the most careful developers can hit unforeseen bottlenecks, in part because the drivers for some graphics processors may reorganize all of that data before it can actually be processed. The APIs used to control these drivers are also not designed for multi-threaded use, requiring synchronization with locks around calls that could be more efficiently done in parallel. All of this results in CPU overhead, which consumes time and power that you’d probably prefer to spend drawing your scene.
In order to address some of the sources of CPU overhead and provide developers with more explicit control over rendering, we’ve been working to bring a new 3D rendering API, Vulkan™, to Android. Like OpenGL™ ES, Vulkan is an open standard for 3D graphics and rendering maintained by Khronos. Vulkan is being designed from the ground up to minimize CPU overhead in the driver, and allow your application to control GPU operation more directly. Vulkan also enables better parallelization by allowing multiple threads to perform work such as command buffer construction at once.
To make it easier to write an application once that works across a variety of devices, Android 5.0 Lollipop significantly expanded the Android Compatibility Test Suite (CTS) with over fifty thousand new tests for OpenGL ES, and many more have been added since. This provides an extensive open source test suite for identifying problems in drivers so that they can be fixed, creating a more robust and reliable experience for both developers and end users. For Vulkan, we’ll not only develop similar tests for use in the Android CTS, but we’ll also contribute them to Khronos for use in Vulkan’s own open source Conformance Test Suite. This will enable Khronos to test Vulkan drivers across platforms and hardware, and improve the 3D graphics ecosystem as a whole.
We’ll be working hard to help create, test, and ship Vulkan, but at the same time, we’re also going to contribute to and support OpenGL ES. As a developer, you’ll be able to choose which API is right for you: the simplicity of OpenGL ES, or the explicit control of Vulkan. We’re committed to providing an excellent developer experience, no matter which API you choose.
Vulkan is still under development, but you’ll be able to find specifications, tests, and tools once they are released at http://www.khronos.org/vulkan.