Developers often use the Android Emulator during their day-to-day development to quickly test the latest changes before they are being committed. In addition, developers are increasingly using the emulator in their continuous integration (CI) systems to run a larger suite of automated tests. To better support this use-case, we are open sourcing the Android Emulator Container Scripts and improving the developer experiences around two pain points:
Android supports a wide variety of hardware and software configurations, and the Android Emulator is no different. However, this wide variety can create confusion over environment configurations. How should developers obtain emulators and system images? What drivers are required? How do you run with or without CPU or GPU acceleration? (etc. etc.)
To address this we have launched:
To increase reproducibility, the underlying Dockerfile template makes the required command line flags and system dependencies more explicit (and reproducible via building Docker images from them). For hardware acceleration, note the --privileged flag that is passed to run.sh; we assume CPU acceleration is available when running the emulator, and --privileged is needed to run the containers with CPU acceleration (KVM) enabled.
For more details on how to create and deploy the Android Emulator image, go to the README.
When the emulator is running and a test or the emulator fails, it can be difficult to dive into the running environment and diagnose the error. Often, diagnosis requires direct interaction with the virtual device. We provide two mechanisms for direct interaction:
In the case of ADB, we allow all commands, such as logcat and shell, by forwarding a particular port from the Docker guest to the host. Because the current port is 5555, we'll need to collect more feedback and do more research on how best to separate ports across different containers.
Security note: With remote streaming, keep in mind that once the service is started, anyone who can connect to your computer on port 80/443 can interact with the emulator. So be careful with running this on a public server!
With remote streaming, you can run the emulator in a container, which is as interactive as running locally. Running the emulator in a container makes it easier to debug issues that can be hard to discover using ADB commands. You can access the emulator using a browser with WebRTC, which is used to stream the video, and gRPC, which is used to send mouse and keyboard events to the emulator. Remote streaming requires three containers:
You can compose the Docker containers together using docker-compose, as described in the README. The containers bind to port 80 and 443, so make sure you do not have a web server running. A self-signed certificate will be offered if you point the browser to the host. If you point your browser to the host you should see something like the image below:
Again, keep in mind that anyone who can connect to your host can interact with the emulator. So be careful with running this on a public server!
Testing can seem to be a tax on development time. However, as many seasoned developers have seen, proper automated testing can increase development velocity as the code base becomes bigger and more complex. Continuous testing should give you confidence that the change you make won’t break your app.
Posted by Sam Lin, Product Manager, Android
With Project Marble, the Android Studio team focused our efforts on making the fundamental features and flows of the Integrated Development Environment (IDE) rock-solid. Performance is an underlying tenant to delivering a high quality IDE. To this end, we are sharpening our product focus and we will only support 64-bit operating systems going forward. Using Android Studio with an 64-bit operating systems enables efficient access to memory for both the IDE and the Android Emulator, and overall leads to a better development experience. While this change will not affect most Android Studio users, this change does have an impact if you use 32-bit versions of Microsoft® Windows®. To aid in this transition for those developers using 32-bit versions of Microsoft Windows, we want to give you details on the upcoming depreciation timeline plus steps to take to be ready for this upcoming change.
To minimize the impact of this change towards exclusively supporting 64-bit operating systems, we will first deprecate the 32-bit version. During the depreciation phase, both Android Studio and the Android Emulator will continue to work but the products will not receive new feature updates. During this transition period you can still download the product from the Android Studio web site. After one year, we will officially end product support and will remove the 32-bit product version download links. Note, if you have the 32-bit version of Android Studio previously installed during this period then the product should continue to work, but we will not provide a link for you to re-download the product. The exact dates for the depreciation and end-of-support period are in the table below:
There are a few advantages to using a 64-bit version of Android Studio, which include:
To recap, before ending support for the 32-bit version of Android Studio, we want to inform you in advance, provide guidance, and allow for a one-year lead time to help you migrate to a 64-bit operating system. You can still use 32-bit versions of Android Studio, but be mindful that these version will not receive future updates. Therefore, if you want to migrate we suggest you start planning early so that you can continue to get the latest product updates and take advantage of the performance improvements of a 64-bit development environment.
Since the major revamp of the Android Emulator two years ago, we have focused on delivering a fast and feature-rich emulator to help you build great app experiences for users. Today, the Android Emulator is the top device deployed to from Android Studio — more than 2x over physical Android devices. We are humbled to hear from many of you that the Android Emulator has come a long way, but we are not done yet.
Making the Android Emulator faster is one of the top priorities for the Android Studio team. Over the last few releases, we have launched quick boot & emulator snapshots for quickly starting and resuming emulator sessions in under 2 seconds. Up until now, our emulator experience has almost universally worked on macOS® and Linux computers. But for users of Microsoft® Windows® or the Microsoft® Hyper-V™ platform, our hardware accelerated speed enhancements for the Android Emulator only worked with computers with Intel® processors. Support for AMD® processors and Microsoft Hyper-V hypervisor are two long-standing user requests from the Android developer community that we are happy to address with this Android Emulator update.
Today, you can download the latest Android Emulator release, which is enabled to run x86 based Android Virtual Devices (AVD) on computers that use AMD processors. This exciting update makes the Android Emulator more accessible to a new set of Android app developers that were previously limited to software emulation, but can now have hardware accelerated performance. Moreover, for those of you who use Hyper-V to run your local app backend, the Android Emulator can now also coexist with other Hyper-V-backed applications on Windows® 10.
Thanks to a new Microsoft Windows Hypervisor Platform (WHPX) API and recent open-source contributions from Microsoft, even more Android app developers can take advantage of all the speed improvements and features in the Android Emulator.
Android Emulator running on Windows 10 with AMD Processor Screenshot Configuration: Asus ROG Strix GL 702ZC, Processor: AMD® Ryzen™ 7 1700 Processor, Chipset: AMD 5350, Graphics: AMD® Radeon™ RX580
Support for these technologies was initially available in the v27.3.8 Android Emulator canary release and today we are releasing this set of preview features (AMD processor & Hyper-V support) on the stable channel for more feedback. Alongside this update, we have added additional speed improvements in loading emulator snapshots for those developers using the Intel® Hardware Accelerated Execution Manager (HAXM).
If you use Linux for Android app development, the Android Emulator will continue to use the native Kernel-based Virtual Machine (KVM) hypervisor for both Intel and AMD based computers for a fast and performant virtualization solution. An update to the v27.3.8 Android Emulator will offer you the new snapshots UI along with improvements to performance, reliability and resource usage.
For OS X v10.10 Yosemite and higher, the Android Emulator uses the built-in Hypervisor.Framework by default, and falls back to using the Intel Hardware Accelerated Execution Manager (HAXM) if Hypervisor.Framework fails to initialize (such as when running on OS X v10.9 or earlier). Once you update to the latest Android Emulator on macOS, you will also have access to the new snapshots UI along with under the hood performance and reliability improvements.
Android Emulator - Snapshots Extended Controls
On Intel x86-based computers, the Android Emulator will continue to use Intel HAXM by default. Intel HAXM is a mature and open-sourced hypervisor solution developed by Intel. Thanks to on-going development by Intel, the fastest emulator performance on Windows is still with Intel HAXM. To download the latest Intel HAXM v7.2.0, check for updates in the Android SDK Manager.
If you have an AMD processor in your computer you need the following setup requirements to be in place:
Windows Hypervisor Platform setting in Windows 10
If you want to use Hyper-V at the same time as the Android Emulator on your Intel processor-based computer, you will also need the same Android Studio and Android Emulator versions as listed above, but with the additional requirements:
For more setup tips and troubleshooting details, check out the documentation page.
Again, for existing Windows users who have an Intel-based processor, the Android Emulator will continue to use the faster and recommended Intel HAXM configuration. For those using AMD processors, and those who use Hyper-V hypervisors, this should be an exciting step forward to start using the Android Emulator.
Download the latest Android Emulator from the Android Studio 3.2 Beta SDK Manager for the latest performance updates across all supported platforms that you are using. We are going to continue to invest in performance improvements for each of the platforms and we look forward to your feedback and feature requests.
If you find a bug or issue, feel free to file an issue. Connect with us -- the Android Studio development team ‐ on our Google+ page or on Twitter.
Today, we are excited to announce Quick Boot for the Android Emulator. With Quick Boot, you can launch the Android Emulator in under 6 seconds. Quick Boot works by snapshotting an emulator session so you can reload in seconds. Quick Boot was first released with Android Studio 3.0 in the canary update channel and we are excited to release the feature as a stable update today.
In addition to this new feature, we also wanted to highlight some of the top features from recent releases. Since the complete revamp of the Android Emulator two years ago, we continue to focus on improving speed, stability and adding a rich set of features that accelerate your app development and testing. With all the recent changes, it is definitely worth updating to the latest version of the Android Emulator to use it today.
Top 5 Features
Additionally, over the last several releases, we have improved CPU and I/O performance while enhancing GPU performance, including OpenGL ES 3.0 support. Looking at a common task such as ADB push highlights the improvements in the Android CPU and I/O pipelines:
For GPU performance, we created a sample GPU emulation stress test app to gauge improvements over time. We found that the latest emulator can render higher frame rates than before, and it is one of the few emulators that can render OpenGL ES 3.0 accurately per the Android specification.
More Features
In addition to these major features, there are a whole host of additional features that we have added to the Android Emulator over the last year that you may not be aware of:
Learn more about the Android Emulator in the Emulator documentation.
Getting Started
All of these features and improvements are available to download and use now with Android Emulator v27.0.2+, which you can get via the SDK Manager in Android Studio. For a fast experience, we recommend creating and running the x86 version of emulator system images, with the latest Android Emulator, Intel® HAXM (if applicable) and graphics drivers installed.
We appreciate any feedback on things you like, issues or features you would like to see. If you find a bug, issue, or have a feature request feel free to file an issue. We are definitely not done, but we hope you are excited about the improvements so far.