Posted by Jen Chai, Product Manager
Location data can deliver amazing, rich mobile experiences for users on Android such as finding a restaurant nearby, tracking the distance of a run, and getting turn-by-turn directions as you drive. Location is also one of the most sensitive types of personal information for a user. We want to give users simple, easy-to-understand controls for what data they are providing to apps, and yesterday, we announced in Android Q that we are giving users more control over location permissions. We are delighted by the innovative location experiences you provide to users through your apps, and we want to make this transition as straightforward for you as possible. This post dives deeper into the location permission changes in Q, what it may mean for your app, and how to get started with any updates needed.
Previously, a user had a single control to allow or deny an app access to device location, which covered location usage by the app both while it was in use and while it wasn't. Starting in Android Q, users have a new option to give an app access to location only when the app is being used; in other words, when the app is in the foreground. This means users will have a choice of three options for providing location to an app:
Some apps or features within an app may only need location while the app is being used. For example, if a feature allows a user to search for a restaurant nearby, the app only needs to understand the user's location when the user opens the app to search for a restaurant.
However, some apps may need location even when the app is not in use. For example, an app that automatically tracks the mileage you drive for tax filing, without requiring you to interact with the app.
The new location control allows users to decide when device location data is provided to an app and prevents an app from getting location data that it may not need. Users will see this new option in the same permissions dialog that is presented today when an app requests access to location. This permission can also be changed at any time for any app from Settings-> Location-> App permission.
We know these updates may impact your apps. We respect our developer community, and our goal is to approach any change like this very carefully. We want to support you as much as we can by (1) releasing developer-impacting features in the first Q Beta to give you as much time as possible to make any updates needed in your apps and (2) providing detailed information in follow-up posts like this one as well as in the developer guides and privacy checklist. Please let us know if there are ways we can make the guides more helpful!
If your app has a feature requiring "all the time" permission, you'll need to add the new ACCESS_BACKGROUND_LOCATION permission to your manifest file when you target Android Q. If your app targets Android 9 (API level 28) or lower, the ACCESS_BACKGROUND_LOCATION permission will be automatically added for you by the system if you request either ACCESS_FINE_LOCATION or ACCESS_COARSE_LOCATION. A user can decide to provide or remove these location permissions at any time through Settings. To maintain a good user experience, design your app to gracefully handle when your app doesn't have background location permission or when it doesn't have any access to location.
ACCESS_BACKGROUND_LOCATION
ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION
Users will also be more likely to grant the location permission if they clearly understand why your app needs it. Consider asking for the location permission from users in context, when the user is turning on or interacting with a feature that requires it, such as when they are searching for something nearby. In addition, only ask for the level of access required for that feature. In other words, don't ask for "all the time" permission if the feature only requires "while in use" permission.
To learn more, read the developer guide on how to handle the new location controls.
Posted by Dave Burke, VP of Engineering
In 2019, mobile innovation is stronger than ever, with new technologies from 5G to edge to edge displays and even foldable screens. Android is right at the center of this innovation cycle, and thanks to the broad ecosystem of partners across billions of devices, Android's helping push the boundaries of hardware and software bringing new experiences and capabilities to users.
As the mobile ecosystem evolves, Android is focused on helping users take advantage of the latest innovations, while making sure users' security and privacy are always a top priority. Building on top of efforts like Google Play Protect and runtime permissions, Android Q brings a number of additional privacy and security features for users, as well as enhancements for foldables, new APIs for connectivity, new media codecs and camera capabilities, NNAPI extensions, Vulkan 1.1 support, faster app startup, and more.
Today we're releasing Beta 1 of Android Q for early adopters and a preview SDK for developers. You can get started with Beta 1 today by enrolling any Pixel device (including the original Pixel and Pixel XL, which we've extended support for by popular demand!) Please let us know what you think! Read on for a taste of what's in Android Q, and we'll see you at Google I/O in May when we'll have even more to share.
Android was designed with security and privacy at the center. As Android has matured, we've added a wide range of features to protect users, like file-based encryption, OS controls requiring apps to request permission before accessing sensitive resources, locking down camera/mic background access, lockdown mode, encrypted backups, Google Play Protect (which scans over 50 billion apps a day to identify potentially harmful apps and remove them), and much more. In Android Q, we've made even more enhancements to protect our users. Many of these enhancements are part of our work in Project Strobe.
With Android Q, the OS helps users have more control over when apps can get location. As in prior versions of the OS, apps can only get location once the app has asked you for permission, and you have granted it.
One thing that's particularly sensitive is apps' access to location while the app is not in use (in the background). Android Q enables users to give apps permission to see their location never, only when the app is in use (running), or all the time (when in the background).
For example, an app asking for a user's location for food delivery makes sense and the user may want to grant it the ability to do that. But since the app may not need location outside of when it's currently in use, the user may not want to grant that access. Android Q now offers this greater level of control. Read the developer guide for details on how to adapt your app for this new control. Look for more user-centric improvements to come in upcoming Betas. At the same time, our goal is to be very sensitive to always give developers as much notice and support as possible with these changes.
Beyond changes to location, we're making further updates to ensure transparency, give users control, and secure personal data.
In Android Q, the OS gives users even more control over apps, controlling access to shared files. Users will be able to control apps' access to the Photos and Videos or the Audio collections via new runtime permissions. For Downloads, apps must use the system file picker, which allows the user to decide which Download files the app can access. For developers, there are changes to how your apps can use shared areas on external storage. Make sure to read the Scoped Storage changes for details.
We've also seen that users (and developers!) get upset when an app unexpectedly jumps into the foreground and takes over focus. To reduce these interruptions, Android Q will prevent apps from launching an Activity while in the background. If your app is in the background and needs to get the user's attention quickly -- such as for incoming calls or alarms -- you can use a high-priority notification and provide a full-screen intent. See the documentation for more information.
We're limiting access to non-resettable device identifiers, including device IMEI, serial number, and similar identifiers. Read the best practices to help you choose the right identifiers for your use case, and see the details here. We're also randomizing the device's MAC address when connected to different Wi-Fi networks by default -- a setting that was optional in Android 9 Pie.
We are bringing these changes to you early, so you can have as much time as possible to prepare. We've also worked hard to provide developers detailed information up front, we recommend reviewing the detailed docs on the privacy changes and getting started with testing right away.
In Android Q, we're enabling new ways to bring users into your apps and streamlining the experience as they transition from other apps.
Foldable devices have opened up some innovative experiences and use-cases. To help your apps to take advantage of these and other large-screen devices, we've made a number of improvements in Android Q, including changes to onResume and onPause to support multi-resume and notify your app when it has focus. We've also changed how the resizeableActivity manifest attribute works, to help you manage how your app is displayed on foldable and large screens. To you get started building and testing on these new devices, we've been hard at work updating the Android Emulator to support multiple-display type switching -- more details coming soon!
When a user wants to share content like a photo with someone in another app, the process should be fast. In Android Q we're making this quicker and easier with Sharing Shortcuts, which let users jump directly into another app to share content. Developers can publish share targets that launch a specific activity in their apps with content attached, and these are shown to users in the share UI. Because they're published in advance, the share UI can load instantly when launched.
The Sharing Shortcuts mechanism is similar to how App Shortcuts works, so we've expanded the ShortcutInfo API to make the integration of both features easier. This new API is also supported in the new ShareTarget AndroidX library. This allows apps to use the new functionality, while allowing pre-Q devices to work using Direct Share. You can find an early sample app with source code here.
You can now also show key system settings directly in the context of your app, through a new Settings Panel API, which takes advantage of the Slices feature that we introduced in Android 9 Pie.
A settings panel is a floating UI that you invoke from your app to show system settings that users might need, such as internet connectivity, NFC, and audio volume. For example, a browser could display a panel with connectivity settings like Airplane Mode, Wi-Fi (including nearby networks), and Mobile Data. There's no need to leave the app; users can manage settings as needed from the panel. To display a settings panel, just fire an intent with one of the new Settings.Panel actions.
In Android Q, we've extended what your apps can do with Android's connectivity stack and added new connectivity APIs.
Most of our APIs for scanning networks already require COARSE location permission, but in Android Q, for Bluetooth, Cellular and Wi-Fi, we're increasing the protection around those APIs by requiring the FINE location permission instead. If your app only needs to make peer-to-peer connections or suggest networks, check out the improved Wi-Fi APIs below -- they simplify connections and do not require location permission.
In addition to the randomized MAC addresses that Android Q provides when connected to different Wi-Fi networks, we're adding new Wi-Fi standard support, WPA3 and Enhanced Open, to improve security for home and work networks as well as open/public networks.
In Android Q we refactored the Wi-Fi stack to improve privacy and performance, but also to improve common use-cases like managing IoT devices and suggesting internet connections -- without requiring the location permission.
The network connection APIs make it easier to manage IoT devices over local Wi-Fi, for peer-to-peer functions like configuring, downloading, or printing. Apps initiate connection requests indirectly by specifying preferred SSIDs & BSSIDs as WiFiNetworkSpecifiers. The platform handles the Wi-Fi scanning itself and displays matching networks in a Wi-Fi Picker. When the user chooses, the platform sets up the connection automatically.
The network suggestion APIs let apps surface preferred Wi-Fi networks to the user for internet connectivity. Apps initiate connections indirectly by providing a ranked list of networks and credentials as WifiNetworkSuggestions. The platform will seamlessly connect based on past performance when in range of those networks.
You can now request adaptive Wi-Fi in Android Q by enabling high performance and low latency modes. These will be of great benefit where low latency is important to the user experience, such as real-time gaming, active voice calls, and similar use-cases.
To use the new performance modes, call WifiManager.WifiLock.createWifiLock() with WIFI_MODE_FULL_LOW_LATENCY or WIFI_MODE_FULL_HIGH_PERF. In these modes, the platform works with the device firmware to meet the requirement with lowest power consumption.
WIFI_MODE_FULL_LOW_LATENCY
WIFI_MODE_FULL_HIGH_PERF
Many cameras on mobile devices can simulate narrow depth of field by blurring the foreground or background relative to the subject. They capture depth metadata for various points in the image and apply a static blur to the image, after which they discard the depth metadata.
Starting in Android Q, apps can request a Dynamic Depth image which consists of a JPEG, XMP metadata related to depth related elements, and a depth and confidence map embedded in the same file on devices that advertise support.
Requesting a JPEG + Dynamic Depth image makes it possible for you to offer specialized blurs and bokeh options in your app. You can even use the data to create 3D images or support AR photography use-cases in the future. We're making Dynamic Depth an open format for the ecosystem, and we're working with our device-maker partners to make it available across devices running Android Q and later.
Android Q introduces support for the open source video codec AV1. This allows media providers to stream high quality video content to Android devices using less bandwidth. In addition, Android Q supports audio encoding using Opus - a codec optimized for speech and music streaming, and HDR10+ for high dynamic range video on devices that support it.
The MediaCodecInfo API introduces an easier way to determine the video rendering capabilities of an Android device. For any given codec, you can obtain a list of supported sizes and frame rates using VideoCodecCapabilities.getSupportedPerformancePoints(). This allows you to pick the best quality video content to render on any given device.
For apps that perform their audio processing in C++, Android Q introduces a native MIDI API to communicate with MIDI devices through the NDK. This API allows MIDI data to be retrieved inside an audio callback using a non-blocking read, enabling low latency processing of MIDI messages. Give it a try with the sample app and source code here.
To enable more consistency for game and graphics developers, we are working towards a standard, updateable OpenGL driver for all devices built on Vulkan. In Android Q we're adding experimental support for ANGLE on top of Vulkan on Android devices. ANGLE is a graphics abstraction layer designed for high-performance OpenGL compatibility across implementations. Through ANGLE, the many apps and games using OpenGL ES can take advantage of the performance and stability of Vulkan and benefit from a consistent, vendor-independent implementation of ES on Android devices. In Android Q, we're planning to support OpenGL ES 2.0, with ES 3.0 next on our roadmap.
We'll expand the implementation with more OpenGL functionality, bug fixes, and performance optimizations. See the docs for details on the current ANGLE support in Android, how to use it, and our plans moving forward. You can start testing with our initial support by opting-in through developer options in Settings. Give it a try today!
We're continuing to expand the impact of Vulkan on Android, our implementation of the low-overhead, cross-platform API for high-performance 3D graphics. Our goal is to make Vulkan on Android a broadly supported and consistent developer API for graphics. We're working together with our device manufacturer partners to make Vulkan 1.1 a requirement on all 64-bit devices running Android Q and higher, and a recommendation for all 32-bit devices. Going forward, this will help provide a uniform high-performance graphics API for apps and games to use.
Since introducing the Neural Networks API (NNAPI) in 2017, we've continued to expand the number of operations supported and improve existing functionality. In Android Q, we've added 60 new ops including ARGMAX, ARGMIN, quantized LSTM, alongside a range of performance optimisations. This lays the foundation for accelerating a much greater range of models -- such as those for object detection and image segmentation. We are working with hardware vendors and popular machine learning frameworks such as TensorFlow to optimize and roll out support for NNAPI 1.2.
Android Q introduces several new improvements to the ART runtime which help apps start faster and consume less memory, without requiring any work from developers.
Since Android Nougat, ART has offered Profile Guided Optimization (PGO), which speeds app startup over time by identifying and precompiling frequently executed parts of your code. To help with initial app startup, Google Play is now delivering cloud-based profiles along with APKs. These are anonymized, aggregate ART profiles that let ART pre-compile parts of your app even before it's run, giving a significant jump-start to the overall optimization process. Cloud-based profiles benefit all apps and they're already available to devices running Android P and higher.
We're also continuing to make improvements in ART itself. For example, in Android Q we've optimized the Zygote process by starting your app's process earlier and moving it to a security container, so it's ready to launch immediately. We're storing more information in the app's heap image, such as classes, and using threading to load the image faster. We're also adding Generational Garbage Collection to ART's Concurrent Copying (CC) Garbage Collector. Generational CC is more efficient as it collects young-generation objects separately, incurring much lower cost as compared to full-heap GC, while still reclaiming a good amount of space. This makes garbage collection overall more efficient in terms of time and CPU, reducing jank and helping apps run better on lower-end devices.
BiometricPrompt is our unified authentication framework to support biometrics at a system level. In Android Q we're extending support for passive authentication methods such as face, and adding implicit and explicit authentication flows. In the explicit flow, the user must explicitly confirm the transaction in the TEE during the authentication. The implicit flow is designed for a lighter-weight alternative for transactions with passive authentication. We've also improved the fallback for device credentials when needed.
Android Q adds support for TLS 1.3, a major revision to the TLS standard that includes performance benefits and enhanced security. Our benchmarks indicate that secure connections can be established as much as 40% faster with TLS 1.3 compared to TLS 1.2. TLS 1.3 is enabled by default for all TLS connections. See the docs for details.
Another thing we all care about is ensuring that apps run smoothly as the OS changes and evolves. Apps using non-SDK APIs risk crashes for users and emergency rollouts for developers. In Android Q we're continuing our long-term effort begun in Android P to move apps toward only using public APIs. We know that moving your app away from non-SDK APIs will take time, so we're giving you advance notice.
In Android Q we're restricting access to more non-SDK interfaces and asking you to use the public equivalents instead. To help you make the transition and prevent your apps from breaking, we're enabling the restrictions only when your app is targeting Android Q. We'll continue adding public alternative APIs based on your requests; in cases where there is no public API that meets your use case, please let us know.
It's important to test your apps for uses of non-SDK interfaces. We recommend using the StrictMode method detectNonSdkApiUsage() to warn when your app accesses non-SDK APIs via reflection or JNI. Even if the APIs are exempted (grey-listed) at this time, it's best to plan for the future and eliminate their use to reduce compatibility issues. For more details on the restrictions in Android Q, see the developer guide.
We're expanding our efforts to have all apps take full advantage of the security and performance features in the latest version of Android. Later this year, Google Play will require you to set your app's targetSdkVersion to 28 (Android 9 Pie) in new apps and updates. In line with these changes, Android Q will warn users with a dialog when they first run an app that targets a platform earlier than API level 23 (Android Marshmallow). Here's a checklist of resources to help you migrate your app.
We're also moving the ecosystem toward readiness for 64-bit devices. Later this year, Google Play will require 64-bit support in all apps. If your app uses native SDKs or libraries, keep in mind that you'll need to provide 64-bit compliant versions of those SDKs or libraries. See the developer guide for details on how to get ready.
With important privacy features that are likely to affect your apps, we recommend getting started with testing right away. In particular, you'll want to enable and test with Android Q storage changes, new location permission states, restrictions on background app launch, and restrictions on device identifiers. See the privacy documentation for details.
To get started, just install your current app from Google Play onto a device or Android Virtual Device running Android Q Beta and work through the user flows. The app should run and look great, and handle the Android Q behavior changes for all apps properly. If you find issues, we recommend fixing them in the current app, without changing your targeting level. Take a look at the migration guide for steps and a recommended timeline.
Next, update your app's targetSdkVersion to 'Q' as soon as possible. This lets you test your app with all of the privacy and security features in Android Q, as well as any other behavior changes for apps targeting Q.
When you're ready, dive into Android Q and learn about the new features and APIs you can use in your apps. Take a look at the API diff report, the Android Q Beta API reference, and developer guides as a starting point. Also, on the Android Q Beta developer site, you'll find release notes and support resources for reporting issues.
To build with Android Q, download the Android Q Beta SDK and tools into Android Studio 3.3 or higher, and follow these instructions to configure your environment. If you want the latest fixes for Android Q related changes, we recommend you use Android Studio 3.5 or higher.
It's easy - you can enroll here to get Android Q Beta updates over-the-air, on any Pixel device (and this year we're supporting all three generations of Pixel -- Pixel 3, Pixel 2, and even the original Pixel!). Downloadable system images for those devices are also available. If you don't have a Pixel device, you can use the Android Emulator, and download the latest emulator system images via the SDK Manager in Android Studio.
We plan to update the preview system images and SDK regularly throughout the preview. We'll have more features to share as the Beta program moves forward.
As always, your feedback is critical, so please let us know what you think — the sooner we hear from you, the more of your feedback we can integrate. When you find issues, please report them here. We have separate hotlists for filing platform issues, app compatibility issues, and third-party SDK issues.
Last year in Android Nougat, we introduced APIs for retrieving Global Navigation Satellite System (GNSS) Raw measurements from Android devices. This past week, we publicly released GNSS Analysis Tools to process and analyze these measurements.
Android powers over 2 billion devices, and Android phones are made by many different manufacturers. The primary intent of these tools is to enable device manufacturers to see in detail how well the GNSS receivers are working in each particular device design, and thus improve the design and GNSS performance in their devices. However, with the tools publicly available, there is also significant value to the research and app developer community.
The GNSS Analysis Tool is a desktop application that takes in raw the GNSS Measurements logged from your Android device as input.
This desktop application provides interactive plots, organized into three columns showing the behavior of the RF, Clock, and Measurements. This data allows you to see the behavior of the GNSS receiver in great detail, including receiver clock offset and drift to the order of 1 nanosecond and 1 ppb and measurement errors on a satellite-by-satellite basis. This allows you to do sophisticated analysis at a level that, until now, was almost inaccessible to anyone but the chip manufacturers themselves.
The tools support multi-constellation (GPS, GLONASS, Galileo, BeiDou and QZSS) and multi-frequency. The image below shows the satellite locations for L1, L5, E1 and E5 signals tracked by a dual frequency chip.
The tools provide an interactive control screen from which you can manipulate the plots, shown below. From this control screen, you can change the background color, enable the Menu Bars for printing or saving, and select specific satellites for the plots.
The tools also provide automatic test reports of receivers. Click "Make Report" to automatically create the test report. The report evaluates the API implementation, Received Signal, Clock behavior, and Measurement accuracy. In each case it will report PASS or FAIL based on the performance against known good benchmarks. This test report is primarily meant for the device manufacturers to use as they iterate on the design and implementation of a new device. A sample report is shown below.
Our goal with providing these Analysis Tools is to empower device manufacturers, researchers, and developers with data and knowledge to make Android even better for our customers. You can visit the GNSS Measurement site to learn more and download this application.
The 11.0.0 release of the Google Play services SDK includes a new way to access LocationServices. The new APIs do not require your app to manually manage a connection to Google Play services through a GoogleApiClient. This reduces boilerplate and common pitfalls in your app.
GoogleApiClient
Read more below, or head straight to the updated location samples on GitHub.
The LocationServices APIs allow you to access device location, set up geofences, prompt the user to enable location on the device and more. In order to access these services, the app must connect to Google Play services, which can involve error-prone connection logic. For example, can you spot the crash in the app below?
Note: we'll assume our app has the ACCESS_FINE_LOCATION permission, which is required to get the user's exact location using the LocationServices APIs.
public class MainActivity extends AppCompatActivity implements GoogleApiClient.OnConnectionFailedListener { @Override public void onCreate(@Nullable Bundle savedInstanceState) { super.onCreate(savedInstanceState); GoogleApiClient client = new GoogleApiClient.Builder(this) .enableAutoManage(this, this) .addApi(LocationServices.API) .build(); client.connect(); PendingResult result = LocationServices.FusedLocationApi.requestLocationUpdates( client, LocationRequest.create(), pendingIntent); result.setResultCallback(new ResultCallback() { @Override public void onResult(@NonNull Status status) { Log.d(TAG, "Result: " + status.getStatusMessage()); } }); } // ... }
If you pointed to the requestLocationUpdates() call, you're right! That call throws an IllegalStateException, since the GoogleApiClient is has not yet connected. The call to connect() is asynchronous.
requestLocationUpdates()
IllegalStateException
connect()
While the code above looks like it should work, it's missing a ConnectionCallbacks argument to the GoogleApiClient builder. The call to request location updates should only be made after the onConnected callback has fired:
onConnected
public class MainActivity extends AppCompatActivity implements GoogleApiClient.OnConnectionFailedListener, GoogleApiClient.ConnectionCallbacks { private GoogleApiClient client; @Override protected void onCreate(@Nullable Bundle savedInstanceState) { super.onCreate(savedInstanceState); client = new GoogleApiClient.Builder(this) .enableAutoManage(this, this) .addApi(LocationServices.API) .addConnectionCallbacks(this) .build(); client.connect(); } @Override public void onConnected(@Nullable Bundle bundle) { PendingResult result = LocationServices.FusedLocationApi.requestLocationUpdates( client, LocationRequest.create(), pendingIntent); result.setResultCallback(new ResultCallback() { @Override public void onResult(@NonNull Status status) { Log.d(TAG, "Result: " + status.getStatusMessage()); } }); } // ... }
Now the code works, but it's not ideal for a few reasons:
onCreate
The new LocationServices APIs are much simpler and will make your code less error prone. The connection logic is handled automatically, and you only need to attach a single completion listener:
LocationServices
public class MainActivity extends AppCompatActivity { @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); FusedLocationProviderClient client = LocationServices.getFusedLocationProviderClient(this); client.requestLocationUpdates(LocationRequest.create(), pendingIntent) .addOnCompleteListener(new OnCompleteListener() { @Override public void onComplete(@NonNull Task task) { Log.d("MainActivity", "Result: " + task.getResult()); } }); } }
The new API immediately improves the code in a few ways:
The new API will automatically resolve certain connection failures for you, so you don't need to write code that for things like prompting the user to update Google Play services. Rather than exposing connection failures globally in the onConnectionFailed method, connection problems will fail the Task with an ApiException:
client.requestLocationUpdates(LocationRequest.create(), pendingIntent) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { if (e instanceof ApiException) { Log.w(TAG, ((ApiException) e).getStatusMessage()); } else { Log.w(TAG, e.getMessage()); } } });
Try the new LocationServices APIs out for yourself in your own app or head over to the android-play-location samples on GitHub and see more examples of how the new clients reduce boilerplate and simplify logic.
Posted by Joshua Gordon, Developer Advocate
Go for a run, improve your game, and explore the great outdoors with Android Wear! Developers are creating a diverse array of fitness apps that provide everything from pace and heart rate while running, to golf tips on your favorite course, to trail maps for hiking. Let’s take a look features of the open and flexible Wear platform they use to create great user experiences.
If your app supports always-on, you’ll never have to touch or twist your watch to activate the display. Running and want to see your pace? Glance at your wrist and it’s there! Runtastic, Endomondo, and MapMyRun use always-on to keep your stats visible, even in ambient mode. When it’s time for golf, I use Golfshot. Likewise, Golfshot uses always-on to continuously show yardage to the hole, so I never have to drop my club. Check out the doc, DevByte, and code sample to learn more.
It's encouraging to see how much ground I’ve covered when I go for a run or ride! Using the Maps API, you can show users their route, position, and place markers on the map they can tap to see more info you provide. All of this functionality is available to you using the same Maps API you’ve already worked with on Android. Check out the doc, DevByte, code sample, and blog post to learn more.
Google Fit is an open platform designed to make it easier to write fitness apps. It provides APIs to help with many common tasks. For example, you can use the Recording API to estimate how many steps the user has taken and how many calories they've burned. You can make that data to your app via the History API, and even access it over the web via REST, without having to write your own backend. Now, Google Fit can store data from a wide variety of exercises, from running to weightlifting. Check out the DevByte and code samples to learn more.
With the latest release of Android Wear, developers can now pair BLE devices directly with the Wearable. This is a great opportunity for all fitness apps -- and especially for running -- where carrying both a phone and the Wearable can be problematic. Imagine if your users could pair their heart rate straps or bicycle cadence sensors directly to their Wear device, and leave their phones at home. BLE is now supported by all Wear devices, and is supported by Google Fit. To learn more about it, check out this guide and DevByte.
When I’m running, carrying both a phone and a wearable can be a bit much. If you’re using an Android Wear device that supports onboard GPS, you can leave your phone at home! Since not all Wear devices have an onboard GPS sensor, you can use the FusedLocationProviderApi to seamlessly retrieve GPS coordinates from the phone if not available on the wearable. Check out this handy guide for more about detecting location on Wear.
When I’m back home and ready for more details on my activity, I can see them by opening the app on my phone. My favorite fitness apps transparently sync data between my Wearable and phone. To learn more about syncing data between devices, watch this DevByte on the DataLayer API.
Android Wear gives you the tools and training you need to create exceptional fitness apps. To get started on yours, visit developer.android.com/wear and join the discussion at g.co/androidweardev.
Posted by Ian Lake, Developer Advocate
Today, we’re excited to give you new tools to build better apps with the rollout of Google Play services 7.3. With new Android Wear APIs, the addition of nutrition data to Google Fit, improvements to retrieving the user’s activity and location, and better support for optional APIs, there’s a lot to explore in this release.
Google Play services 7.3 extends the Android Wear network by enabling you to connect multiple Wear devices to a single mobile device.
While the DataApi will automatically sync DataItems across all nodes in the Wear network, the directed nature of the MessageApi is faced with new challenges. What node do you send a message to when the NodeApi starts showing multiple nodes from getConnectedNodes()? This is exactly the use case for the new CapabilityApi, which allows different nodes to advertise that they provide a specific functionality (say, the phone node being able to download images from the internet). This allows you to replace a generic NodeListener with a more specific CapabilityListener, getting only connection results and a list of nodes that have the specific functionality you need. We’ve updated the Sending and Receiving Messages training to explore this new functionality.
DataApi
DataItems
MessageApi
NodeApi
getConnectedNodes()
NodeListener
CapabilityListener
Another new addition for Android Wear is the ChannelApi, which provides a bidirectional data connection between two nodes. While assets are the best way to efficiently add binary data to the data layer for synchronization to all devices, this API focuses on sending larger binary data directly between specific nodes. This comes in two forms: sending full files via the sendFile() method (perfect for later offline access) or opening an OutputStream to stream real time binary data. We hope this offers a flexible, low level API to complement the DataApi and MessageApi.
ChannelApi
sendFile()
OutputStream
We’ve updated our samples with these changes in mind so go check them out here!
Google Fit makes building fitness apps easier with fitness specific APIs on retrieving sensor data like current location and speed, collecting and storing activity data in Google Fit’s open platform, and automatically aggregating that data into a single view of the user’s fitness data.
To make it even easier to retrieve up-to-date information, Google Play Services 7.3 adds a new method to the HistoryApi: readDailyTotal(). This automatically aggregates data for a given DataType from midnight on the current day through now, giving you a single DataPoint. For TYPE_STEP_COUNT_DELTA, this method does not require any authentication, making it possible to retrieve the current number of steps for today from any application whether on mobile devices or on Android Wear - great for watch faces!
HistoryApi
readDailyTotal()
DataType
DataPoint
TYPE_STEP_COUNT_DELTA
Google Fit is also augmenting its existing data types with granular nutrition information, including protein, fat, cholesterol, and more. By leveraging these details about the user’s diet, developers can help users stay more informed about their health and fitness.
LocationRequest is the heart of the FusedLocationProviderApi, encapsulating the type and frequency of location information you’d like to receive. An important, but small change to LocationRequest is the addition of a maximum wait time for location updates via setMaxWaitTime(). By using a value at least two times larger than the requested interval, the system can batch location updates together, reducing battery usage and, on some devices, actually improving location accuracy.
LocationRequest
FusedLocationProviderApi
setMaxWaitTime()
For any ongoing location requests, it is important to know that you will continue to get good location data back. The SettingsApi is still incredibly useful for confirming that user settings are optimal before you put in a LocationRequest, however, it isn’t the best approach for continual monitoring. For that, you can use the new LocationCallback class in place of your existing LocationListener to receive LocationAvailability updates in addition to location updates, giving you a simple callback whenever settings might have changed which will affect the current set of LocationRequests. You can also use FusedLocationProviderApi’s getLocationAvailability() to retrieve the current state on demand.
SettingsApi
LocationCallback
LocationListener
LocationAvailability
LocationRequests
getLocationAvailability()
One of the biggest benefits of GoogleApiClient is that it provides a single connection state, whether you are connecting to a single API or multiple APIs. However, this made it hard to work with APIs that might not be available on all devices, such as the Wearable API. This release makes it much easier to work with APIs that may not always be available with the addition of an addApiIfAvailable() method ensuring that unavailable APIs do not hold up the connection process. The current state for each API can then be retrieved via getConnectionResult(), giving you a way to check at runtime whether an API is available and connected.
addApiIfAvailable()
getConnectionResult()
While GoogleApiClient’s connection process already takes care of checking for Google Play services availability, if you are not using GoogleApiClient, you’ll find many of the static utility methods in GooglePlayServicesUtil such as isGooglePlayServicesAvailable() have now been moved to the singleton GoogleApiAvailability class. We hope the move away from static methods helps you when writing tests, ensuring your application can properly handle any error cases.
GooglePlayServicesUtil
isGooglePlayServicesAvailable()
GoogleApiAvailability
Google Play services 7.3 is now available: get started with updated SDK now!
To learn more about Google Play services and the APIs available to you through it, visit the Google Play services section on the Android Developer site.
Today, we’re bringing you new tools to build better apps with the completion of the rollout of Google Play services 7.0. With this release, we’re delivering improvements to location settings experiences, a brand new API for place information, new fitness data, Google Play Games, and more.
While the FusedLocationProviderApi combines multiple sensors to give you the optimal location, the accuracy of the location your app receives still depends greatly on what settings are enabled on the device (e.g. GPS, wifi, airplane mode, etc). In Google Play services 7.0, we’re introducing a standard mechanism to check that the necessary location settings are enabled for a given LocationRequest to succeed. If there are possible improvements, you can display a one touch control for the user to change their settings without leaving your app.
This API provides a great opportunity to make for a much better user experience, particularly if location information is critical to the user experience of your app such as was the case with Google Maps when they integrated the Location Settings dialog and saw a dramatic increase in the number of users in a good location state.
Location can be so much more than a latitude and longitude: the new Places API makes it easy to get details from Google’s database of places and businesses. The built-in place picker makes it easy for the user to pick their current place and provides all the relevant place details including name, address, phone number, website, and more.
If you prefer to provide your own UI, the getCurrentPlace() API returns places directly around the user’s current location. Autocomplete predictions are also provided to allow a low latency search experience directly within your app.
getCurrentPlace()
You can also manually add places with the addPlace() API and report that the user is at a particular place, ensuring that even the most explorative users can input and share their favorite new places.
addPlace()
The Places API will also be available cross-platform: in a few days, you’ll be able to apply for the Places API for iOS beta program to ensure a great and consistent user experience across mobile platforms.
In Google Play services 7.0, the previous Fitness.API that you passed into your GoogleApiClient has now been replaced with a number of APIs, matching the high level set of Google Fit Android APIs:
Fitness.API
SENSORS_API
RECORDING_API
HISTORY_API
SESSIONS_API
BLE_API
CONFIG_API
This change significantly reduces the memory requirement for Google Fit enabled apps running in the background. Like always, apps built on previous versions of Google Play services will continue to work, but we strongly suggest you rebuild your Google Fit enabled apps to take advantage of this change.
Having all the data can be an empowering part of making meaningful changes and Google Fit is augmenting their existing data types with the addition of body fat percentage and sleep data.
Announced at Game Developers Conference (GDC), we’re offering new tools to supercharge your games on Google Play. Included in Google Play services 7.0 is the Nearby Connections API, allowing games to seamlessly connect smartphones and tablets as second-screen controls to the game running on your TV.
App Indexing lets Google index apps just like websites, enabling Google search results to deep-link directly into your native app. We've simplified the App Indexing API to make this integration even easier for you by combining the existing view()/viewEnd() and action()/end() flows into a single start() and end() API.
view()/viewEnd()
action()/end()
start()
end()
GoogleApiClient serves as the common entry point for accessing Google APIs. For this release, we’ve made retrieval of Google OAuth 2.0 tokens part of GoogleApiClient, making it much easier to request server auth codes to access Google APIs.
You can get started developing today by downloading the Google Play services SDK from the Android SDK Manager.
To learn more about Google Play services and the APIs available to you through it, visit the Google Services section on the Android Developer site.
By Wayne Piekarski, Developer Advocate
With the latest release of Android Wear, wearables with built-in GPS like the Sony Smartwatch 3 can now give you a GPS location update directly from the wearable, without a paired phone nearby. You can now build an app like MyTracks that lets a user track their run even when they leave their phone at home. For wearable devices that do not have built-in GPS, a software solution has always existed in Google Play Services that automatically uses the GPS from your connected phone.
The Golfshot wearable app uses built-in GPS to calculate your distance to the next hole, even when you don’t have your phone with you.
Implementing GPS location updates for Android Wear is simple. On the wearable, use the FusedLocationProviderApi from Google Play services to request location updates. This is the same API that has been available on mobile, so you can easily reuse your existing code and samples.
FusedLocationProviderApi automatically makes the most power-efficient decision about where to get location updates. If the phone is connected to the wearable, it uses the GPS on the phone and sends the updates to the wearable. If the phone is not connected to the wearable and the wearable has a built-in GPS, then it uses the wearable’s GPS.
One case you’ll need to handle is if the phone is not connected to the wearable and the wearable does not have built-in GPS. You will need to detect this and provide a graceful recovery mechanism, such as a message telling the user to bring their phone with them. However, for the most part, deciding which GPS to use, and sending the position from the phone to the wearable, is handled automatically. You do not need to deal with the low-level implementation details yourself.
When writing an app that runs on the wearable, you will eventually want to synchronize the data it collects with the paired phone. When the wearable is being taken out for a run, especially with the built-in GPS, there may not be a phone present. So you will want to store your location data using the Data Layer API, and when the phone reconnects with the wearable later, the data will be automatically synchronized.
For more details about how to use the location API, check out the extensive documentation and sample here.
Also, as a heads up, starting on November 3 with the public release of Android 5.0, you will be able to submit your apps for clearer designation as Android Wear apps on Google Play. If your apps follow the criteria in the Wear App Quality checklist and are accepted as Wear apps on Play, it will be easier for Android Wear users to discover your apps. Stay tuned for more information about how to submit your apps for Android Wear review through the Google Play Developer Console.
Some of the most exciting Android announcements at Google I/O this year are part of our latest Google Play services release, version 3.1.
The new version brings you Google Play games services, part of a new cloud-integrated platform for social gaming based on Google+ identity. Also included are location-based services that make it easier to build efficient location-aware apps. For apps using the popular Google Cloud Messaging platform, you can now take advantage of XMPP messaging and easier setup. Finally, Cross-Platform Single Sign On for Google+ Sign-In is now available to your apps.
You can get started using these APIs and services right away—Google Play services 3.1 is already rolling out to Android devices across the world, with support reaching all the way back to Froyo.
Games are always popular with Android developers, and the announcement of Google Play game services raised the volume even more.
Google Play games services lets you make your games more social, with achievements, leaderboards, and multiplayer, and they help you extend your user’s games across multiple devices by storing game saves and settings in the cloud.
Several great Android games are already using these new game services, including World of Goo, Super Stickman Golf 2, Beach Buggy Blitz, Kingdom Rush, Eternity Warriors 2, and Osmos.
You can take advantage of the new services right away using the games services SDK included in Google Play services. For all the details, check out the Google Play games services documentation.
If you build location-aware Android apps, you’ll want to check out the new location APIs. They make it easy to build accurate, fast, and efficient apps, with new contextual features.
The Fused Location Provider intelligently manages the underlying location technology and gives you the best location according to your needs. We’ve simplified the location APIs and completely rewritten our location algorithm to make location more accurate, flexible and use less battery.
Using the new geofencing API, your app can set up geographic boundaries around specific locations and then receive notifications when the user enters or leaves those areas.
With apps becoming increasingly contextual, understanding what the user is doing is critical to surfacing the right content. A new activity recognition API makes it easy to check the the user’s current activity — still, walking, cycling, and in-vehicle — with very efficient use of the battery. We use low-power sensors and machine-learning classifiers to recognize the activity, giving you both both high accuracy and low battery usage.
To learn more, head over to our training classes at Making Your App Location Aware or dive directly into the reference docs.
We’ve added APIs to make it easier to set up GCM in your apps, and in the service itself we’ve added new messaging capabilities for your apps to use.
A new registration API lets your app register with the service using a single method call and begin receiving messages as soon as the call returns.
If you’d like to try out CCS messaging or the User Notifications API, please sign up for early access.
In the GCM service itself we’ve added support for messaging over XMPP with the new GCM Cloud Connection Server (CCS). Your servers now have a persistent connection over which to send large numbers of messages, very quickly, and with no overhead. New APIs in Google Play services let apps send messages back upstream to third-party servers using CCS, without needing to manage network connections. This helps keep battery and data usage to a minimum.
Also new in the GCM service is a User Notifications API. This new API lets you synchronize notifications across a user’s multiple devices — when the user dismisses a notification on one device, the notification disappears automatically from all the other devices. To get started with GCM, head over to the developer documentation.
Many people use apps on multiple devices throughout the day, switching between their laptops, tablets, and mobile devices. After signing-in to an app on one device, it’s natural that when they pick up a different device and use the same app, they would expect to be signed in there as well.
To help you provide this kind of seamless transition between platforms and stay connected with users across devices, we’re adding Cross-Platform Single Sign On to our Google+ Sign-In capabilities.
If your app is already using Google+ Sign-In, you’ve already got support for Cross-Platform Single Sign On. This feature will be enabled automatically over the coming days.
Cross-Platform Single Sign On gives you a great way to build longer-running, cross-platform user experiences, and it dovetails perfectly with the new Google Play games services for bridging game state across devices using the cloud.
To learn more about Google+ Sign-In, check out http://developers.google.com/+.
Google Play Services is our platform for offering you better integration with Google products, and providing new capabilities to use within your apps. To learn more about Google Play services and the APIs available to you through it, visit the Google Services area of the Android Developers site.